Subject and purpose of work: The purpose of this work was to compare selected portfolio strategies
in terms of return rates in order to answer the question whether the method of determining the
weights of the portfolio and reduction of the number of portfolio elements characterized by strong
positive correlation of rates of return have an impact on its profitability. Materials and methods: The analysis used publicly available data, selected portfolio methods and
hierarchical clustering. Both short- and long-term investment strategies were examined. Results: None of analyzed strategies allows to achieve higher rates of return in any given
(arbitrarily selected) period than other analyzed strategies. Portfolios with a reduced number of
elements in most cases did make it possible to achieve a higher rate of return than the benchmark
portfolios consisting of 15 cyptocurrencies. Conclusions: While making investment decisions, one should bear in mind that the realized rate
of return may significantly differ from the expected rate of return of the portfolio, which is only a
forecast.
PEER REVIEW INFORMATION
Article has been screened for originality
iThenticate
REFERENCES(27)
1.
Borkowski, B., Krawiec, M. (2013). Modele zarządzania ryzykiem inwestycji kapitałowych w sektorze rolno – spożywczym. Polityki Europejskie, Finanse i Marketing, 10(59), 64-78 (in Polish).
Brauneis, A., Mestel, R. (2019). Cryptocurrency-portfolios in a mean-variance framework. Finance Research Letters, 28, 259-264. https://doi.org/10.1016/j.frl.....
Gluzicka, A. (2016). Risk parity portfolios for selected measures of investment risk. Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, 428, 63-71. https://doi.org/10.15611/pn.20....
Goudarzi, S., Jafari, M.J., Asfar, A. (2017). A Hybrid Model for Portfolio Optimization Based on Stock Clustering and Different Investment Strategies. International Journal of Economics and Financial Issues, 7(3), 602-608.
Hrytsiuk, P., Babych, T., Bachyshyna, L. (2019). Cryptocurrency Portfolio Optimization Using Value-At-Risk Measure. Advances in Economics, Business and Management Research, 93, 385-389. https://doi.org/10.2991/smtesm....
Kądziołka, K. (2015b). Transakcje kryptowalutą bitcoin – wybrane zagrożenia. Rola informatyki w naukach ekonomicznych i społecznych. Innowacje i implikacje interdyscyplinarne, 1, 24-35 (in Polish).
Kądziołka, K. (2017a). Ocena czasu funkcjonowania giełd Bitcoin z wykorzystaniem metod nieparametrycznych. Przedsiębiorstwo & Finanse, 2(17), 103-114 (in Polish).
Kądziołka, K. (2020). Poziom dywersyfikacji a dochodowość portfela inwestycyjnego na przykładzie portfeli kryptowalut. Firma i Rynek, 2(58), 18-27 (in Polish).
Mercurio, P.J., Wu, Y., Xie, H. (2020). An Entropy – Based Approach to Portfolio Optimization. Entropy, 22(3), 1-17. https://doi.org/10.3390/e22030....
Pośpiech, E. (2016). Analiza porównawcza wybranych metod grupowania spółek giełdowych. Studia Ekonomiczne Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach, 297, 153-165 (in Polish).
Pichura, M. (2012). Wybrane portfelowe strategie inwestycyjne i ich efektywność. W: A. S. Barczak, D. Iskra (red.), Metody matematyczne, ekonometryczne i komputerowe w finansach i ubezpieczeniach 2010 (s. 220-240). Katowice: Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach (in Polish).
Platanakis, E., Sutcliffe, C., Urquhart, A. (2018). Optimal vs naive diversification in cryptocurrencies. Economic Letters, 171, 93-96. https://doi.org/10.1016/j.econ....
Škarica, B., Lukač, Z. (2012). A Comparison of Basic and Extended Markowitz Model on Croatian Capital Market. Croatian Operational Research Review, 3, 236-244.
Skórska-Pokarowska, U. (2005). Effective Portfolios – Econometrics and Statistics in Search of Profitable Investments. Acta Physica Polonica, 8(36), 2589-2599.
Stanisz, A. (2007). Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny. Tom 3. Analizy wielowymiarowe. Kraków: StatSoft (in Polish).
Ślepaczuk, R., Zenkova, M. (2018). Robustness of Support Vector Machines in Algorithmic Trading on Cryptocurrency Market. Central European Economic Journal, 5(52), 186-205. https://doi.org/10.1515/ceej-2....
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.